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The driving force for self-organization are the fundamental laws of thermodynamics. We 
consider some theoretical models which qualitatively explain anomalous properties of 
these systems. 
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1. INTRODUCTION 

In this section we will consider some theoretical models which can 
explain qualitatively the reason for anomalous properties of oligomer 
liquids observed experimentally (see, for example, [l-201). In par- 
ticular, we substantiate peculiarities of rheological properties of oligo- 
mer liquids which demonstrate even temperature hysteresis of viscosity 
in a series of experiments [4,19,20]. Besides, in the framework of the 
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250 A. E. ARINSHTEIN AND S. M. MEZHIKOVSKII 

phenomenological aggregation models represented below one can find 
the explanation for extraordinary high relaxation times in non- 
equilibrium oligomer liquids (taking place in some situations), which 
are exceptional for liquid systems [ l ,  3,lO- 131. Finally, taking into 
account the inner structure of aggregates (assuming aggregates in 
oligomer liquids to be formations with increased orientation order of 
anisotropic oligomer molecules) has also allowed the theoretical 
explanation of some experimental kinetic anomalies, taking place at 
the initial stage of oligomers polymerization [ l ,  3, 7, 8, 16, 171. Thus, 
our theoretical representations based on the assumption that complex 
supermolecular formations exist in oligomer systems make it possible 
to account for many unusual properties of oligomer liquids. 

When theoretically considering the aggregation processes we shall 
base on the modified Beker-Doring-model offered in [21] for the 
description of terminationless radical polymerization: 

where un is the concentration of aggregates consisting of n molecules; 
v is the concentration of single molecules (a single molecule and an 
aggregate consisting of 1 molecules are the objects of different physical 
nature); kn is the constant of the rate of single molecules addition to 
an aggregate of the size n; and qn is the constant of the rate of sin- 
gle molecules splitting out of an aggregate of the size n. 

The analysis of properties of Eqs. set (2.1)-(2.3) of the modified 
Beker-Doring-model shows that the dependence of the addition and 
splitting out constants k,  and qn on aggregates size n only weakly 
influences the character of the solution of these equations. Therefore 
we can further believe that these constants do not depend on the 
aggregates sizes n. 
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SELF-ORGANIZING OLIGOMER MODELS 25 1 

2. THE ACTIVATION MODEL 

This theoretical model of formation of oligomers supermolecular 
structure is based on the following postulates [22]: 

0 the system consists of aggregates and “disorganized” molecules; 
0 there is a distribution function for such aggregates based on their 

number and sizes, determined by the pre-history of the system; 
0 to attain thermodynamically equilibrium function of number and 

sizes distribution of aggregates, independent on the initial condi- 
tions, the system should previously overcome some energy barrier 
which is determined by the nature of the components; 

0 activation of molecules allowing them to form aggregates occurs 
due to thermal or mechanical (deformation) energy “pumping” into 
the system from outside; 

0 either external mechanical effect or temperature increase may result 
in activation of “disorganized” (not incorporated into aggregates) 
molecules only, but it cannot influence the aggregates themselves; 

0 increase of aggregates sizes occurs only due to addition to them of 
activated “disorganized” molecules; 

0 neither dissociation of aggregates, nor molecules splitting out of 
them is possible; 

0 the number of aggregates is invariable in the process. 

Within the framework of these restrictions, the kinetics of forma- 
tion of aggregates numbers and sizes distribution is described by the 
following equations set in which, for simplicity, the rate constants k 
do not depend on n: 

u, = -kvun + kvun-l, n 2 2, (2.4) 

where u, is the concentration of aggregates consisting of n molecules; 
v is the concentration of activated molecules; k is the constant of the 
rate of an activated molecule addition to aggregates; p is the constant 
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252 A. E. ARINSHTEIN AND S. M. MEZHIKOVSKII 

of the rate of molecules activation; c is the total concentration of mol- 
ecules in the system, including molecules both activated and incor- 
porated into aggregates; the point over a symbol means derivative 
with respect to the time. Eqs. set (2 .4) - (2 .6)  follows from Eqs. (2 .1) -  
(2.3) of the modified Beker-Doring-model, putting qn = 0 and adding 
into Eq. (2 .3)  the addend describing the process of activation of inert 
molecules. 

To solve Eqs. set (2 .4) - (2 .6)  let's introduce the generating function 

(2.7) 
n= 1 

Multiplying Eqs. (2.4) by Z" and Eq. (2 .5)  - by z and summing 
these equations over n we shall obtain the equation for the generating 
function F(z, t ) :  

d - F ( z ,  t )  = ( Z  - l ) k v ( t ) F ( z ,  t ) .  
at 

Equation (2.6) for the function v(t) is also expressed using the 
generating function and it's derivative with respect to z at z = 1: 

The solution of Eqs. (2 .8) ,  (2 .9)  under the initial conditions 

M 

has a simple form 

F ( z ,  t )  = F o b )  exp[(z - l ) W t ) l ,  (2 .11)  

where the function w(t)  is connected with the activated molecules con- 
centration v( t )  by means of the relationships dw(t)/dt = v(t), w(0) = 0. 
In conformity with Eq. (2 .9)  it is equal to 

'-'zo { ( 
'OkN ) [ 1  -exp(-kNt)]- 

p - x  w( t )  = k N ( p  - kN) 

- k F (  1 - ") [ l  - enp(-pt)]}, (2.12) 
c - Fzo 
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SELF-ORGANIZING OLIGOMER MODELS 253 

where Fzo = dFo(z)/dz; Xu, = N = const is the total number of ag- 
gregates in the system. 

The dependence u,( t )  is easily developed using contour integration 
in the complex plane 

As a result we shall get that 

[kw( t)l"-" 7 un( t )  = exp[-kw(t)l x- ( n  - m)! UmO 

m=l 

and that 

v ( t )  = - FzO [ { (p - s) exp( -kNt)- 
(P - kN) 

(2.13) 

(2.14) 

(2.15) 

Using these expressions, the additional contribution to the viscosity 
AQ which arises due to aggregates growth can easily be calculated in 
the approximation of low concentrations of aggregates. Assuming the 
ag-gregates to be rigid impermeable structures [23], the contribution 
of an aggregate to the system viscosity is proportional to its volume, 
which in the case of usual close packing is proportional to the number of 
mole-cules incorporated into the aggregate. Averaging over aggre- 
gates sizes and taking into account Eqs. (2.1 1)  and (2.12), we obtain the 
following: 

c - kFzo 

- kFI(1 - "-> c - Fzo [l - exp(-pt)]]}~. 

(2.16) 

The analysis of the expression (2.16) shows that two characteristic 
time scales are present in the system: = l /kFl  is the characteristic 
time of addition of activated molecules to aggregates and T~ = l/p is 
the characteristic time of molecules activation. 
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Let’s consider the possible situations. 
If T~ < T ~ ,  i.e., if the process of molecules addition to aggregates is 

fast, activated particles do not build up in the system. Thus, no system 
relaxation is observed after the external action ceasing. 

If T~ > T ~ ,  i.e., if activated molecules addition to an aggregate pro- 
ceeds slower than their activation, there should be some time period 
over which the system contains significant number of “disorganized” 
activated particles. Their influence on the viscosity increase is deter- 
mined by the relationship between the time moments t l  (time moment 
of external effect ceasing) and T~ (time moment of complete exhaus- 
tion of the “disorganized” activated molecules in the system). 
Indeed, when r2 < tl < T ~ ,  since some number of “disorganized” 
activated particles has built up in the system, during the time period 
from t l  upto T~ the mass of aggregates will rise. As a result, vis- 
cosity should increase. However, when t l  > 71,  since almost all the 
activated molecules have managed to join the aggregates, no viscosity 
increase is observed. 

In mathematic terms, this may be taken into account, assuming 
p = 0 in Eq. (2.6). After performing the necessary calculations, we 
shall derive that after the external effect ceasing the viscosity time 
dependence is as follows 

where w ( t l )  and v(rl) are determined by the expressions Eqs. (2.12) 
and (2.15) at r = f I .  

When f l  < T~ the term v(tl) is significant. As a result, according to 
Eq. (2.17), the relaxation process takes place in the system. Its char- 
acteristic time is T ~ .  When t l  > T~ the term v(t1) is, according to Eq. 
(2.15), exponentially small and its change amplitude Ar, in Eq. (2.17) is 
likewise exponentially small. The changes of this kind are negligible. 

It should be noted that the presented patterns will be qualitatively 
valid even in the case when the contribution of aggregates size growth 
into viscosity of the system is non-linearly dependent on the particles 
concentration. The dependence of such a type takes place, for instance, 
in the case of non-trivial packing of molecules in aggregates (when 
aggregates are fractal objects) [24]. 
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SELF-ORGANIZING OLIGOMER MODELS 255 

The model considered describes adequately some other features 
of oligomer rheological properties (see below, as well as [l, 2,19,20]). 
However, this model does not take into account the possibility of 
aggregates disintegration and, consequently, it cannot explain a num- 
ber of other oligomer systems properties, such as, for example, unusual- 
ly high relaxation times towards the equilibrium in the systems of 
this type [lo- 161. 

3. THE RELAXATION MODEL 

This model not only takes into account the possibility of aggregates 
growth but also assumes their disintegration. Within the model, be- 
sides the first four postulates accepted for the activation model, the 
following conditions are entered additionally, taking into account 
some peculiarities of relaxation of the aggregate-size distribution func- 
tion towards the equilibrium [25]: 

0 on the way to the equilibrium the aggregate-size distribution formed 
in the system after the external effect ceasing varies both due to 
addition of separate activated molecules to the aggregates and 
due to molecules splitting out of aggregates; 

0 the number of aggregates in the process does not vary, i.e., genera- 
tion of new aggregates and disintegration of large aggregates into 
smaller ones do not occur. Splitted out separate activated molecules 
cannot be nuclei of a new aggregate, they may only join already 
existing aggregates. 

The relaxation kinetics of the generated earlier aggregates distribu- 
tion is described by Eqs. set (2.1)-(2.3) of the modified Beker-Doring- 
model in which, for simplicity, we shall consider the constants of 
activated particles addition and splitting out of aggregates as inde- 
pendent of an aggregate size, i.e., kn = k and qn = q: 
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256 A. E. ARINSHTEIN AND S. M. MEZHIKOVSKII 

where, as in Eqs. (2.1)-(2.3), un is the concentration of aggregates 
consisting of n molecules; v is the concentration of activated mol- 
ecules; k is the constant of the rate of an activated molecule addition 
to an aggregate of the size n; q is the constant of the rate of activated 
molecules splitting out of an aggregate; the point over a symbol means 
the derivative with respect to the time. 

Equations set (2.18)-(2.20) describes two processes: addition of 
activated particles to aggregates with the rate constants k and splitting 
of activated molecules out of aggregates with the rate constants q. 

Note that two conservation laws correspond to the entered Eqs. 
set (2.18)-(2.20). 

00 00 c un = N = const and c nu,, = M = const, (2.21) 
n= 1 n= 1 

where N is the concentration of all the aggregates in the system, not 
depending on their sizes; M is the concentration of activated mol- 
ecules in the system, including molecules incorporated into aggregates 
(the presence of inactive molecules is not important for this model). 
The existence of these conservation laws essentially facilitates solving 
the problem. 

To solve Eqs. ser (2.18)-(2.20), we shall introduce, as it was done 
above, the generating function F(z,t)  Eq. (2.7). In this case, the 
equations for the latter and for the function v(t) contain the following 
form 

d 
at 
-F(z ,  t )  = (z - 1) (2.22) 

~ ( t )  = --kNv(t) + 4"- Foz(t)]. (2.23) 

where Foz = dF(z, t)/atlz=o = ul(t). 
Note that the equations set developed Eqs. (2.22), (2.23) is not 

closed upon itself. The presence of the summand FoZ(t) in these equa- 
tions makes necessary to introduce an additional equation for its 
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SELF-ORGANIZING OLIGOMER MODELS 257 

solution containing the term Fozz(t) = d2F(z, t)/at2Iz=o = uz(t). For the 
latter it is also necessary to introduce a new additional equation 
containing the generating function derivative of the next order and 
so on. However, it turns out, that the existence of the conservation 
law expressed by means of the generating function 

dF(z,  t)/atl,,l + v(t) = M, (2.24) 

permits to obtain the necessary information concerning the system 
without using any “cutting” procedure of an infinite equations chain. 

For reversible processes the balance between forward and reverse 
processes has to be attained in the system, and Eqs. set (2.22), (2.23) 
should have the steady-state solution, i.e., %(z, t)/& = 0 and dv(t)/ 
dt = 0. 

As the right parts of Eqs. (2.22), (2.23) are equal to zero, we shall 
obtain the steady-state solution 

(2.25a) 

(2.25b) 

where the stationary value of FozJt is determined using the conserva- 
tion law Eq. (2.24). In fact, substituting Eq. (2.25a) into Eq. (2.24), we 
shall obtain a square equation for the term Fozst, the positive root of 
which is 

Fozst = [ /-+ 1 -$MI. (2.26) 

Thus, Eqs. (2.25) and (2.26) describe completely the steady-state of 
the system under consideration. 

To obtain the steady-state aggregates concentration distribution it 
would be sufficient to expand Eq. (2.25a) as a geometrical power series 

n- 1 

urn* = Fozst (1 - a> (2.27) 
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In particular, at q -+ 0 (the disintegration processes are suppressed) 
the concentration of the activated molecules not incorporated into 
aggregates also approaches to zero: vosr + 0, while 

N2 
Fozst = - M ’  

and 

(2.28) 

(2.29) 

On the other hand, assuming q = 0 in Eqs. (19), (20), the direct in- 
tegration of these equations gives: 

~ ( t )  = voexp(-kNt), (2.30) 

F ( z ,  t )  = Fo(z) exp (2.31) 

where vo = v(t = 0) and Fo(z) = F(z, t = 0). 

that, respectively, v(t) -+ 0 and 
At large t values ( t >  1fkN) we develop from Eqs. (2.30) and (2.31) 

F ( z ,  00) = Fo(z) exp ( z  - 1) - , { 3 (2.32) 

whence it follows that the asymptotic aggregate-size distribution at 
p = 0 has the form: 

n- 1 

U n ( m )  = exp (- z )  c U n - m ( t  m! = 0 )  (a>” (2.33) 
m=O 

Comparing Eqs. (3.33) and (3.29) one can see that these two 
distributions do not coincide fundamentally. It means, that at small 
values of the constant q of molecules splitting out of aggregates, i.e., 
when this process is suppressed substantially, the kinetics of the 
formation of equilibrium aggregate-size distribution consists of two 
stages. At the first stage, due to addition of activated molecules to 
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SELF-ORGANIZING OLIGOMER MODELS 259 

existing aggregates some quasi-stable aggregate-size distribution is 
reached relatively quickly. (This distribution is determined by the 
initial system state.) Then, due to splitting of separate molecules out 
of aggregates, slow redistribution of molecules between aggregates 
occurs. As a result, the system relaxes to its true steady-state. 

To estimate the system relaxation time to its true steady-state let’s 
integrate formally Eq. (2.22): 

F(z, 4 

Z 

+ ( z -  l )q~tFo , (z , t ‘ )exp  Y(P’)dt”-- ‘(’- Z ‘ ’ ] }d t ‘ .  

(2.34) 

Equation (2.34) is very inconvenient for the analysis. However, after 
performing the necessary calculations, we shall obtain that the func- 
tion F(z, t )  relaxes at small value of constant q (q  << k M )  to its steady- 
state as 

(2.35) 

Thus, in the case when for the rate constants of the forward 
(addition) and reverse (splitting out) processes k and q the strong 
inequality q << kM is valid, (i.e., the reverse process is substantially 
suppressed) it appears that the time evolution of the generating func- 
tion F(z, r )  has two characteristic stages. The first initial stage lasts for 
a characteristic time of the order 

71 = l/kN, (2.36) 
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and it is described by means of Eq. (2.31). At this stage, the process of 
addition of active molecules to aggregates prevails and some quasi- 
steady-state aggregate-size distribution is reached, depending on the 
initial state of a system. At the second stage, lasting for the char- 
acteristic time of the order 

this quasi-steady-state distribution (due to the processes of the mol- 
ecules redistribution between aggregates) relaxes to the true steady- 
state distribution, which depends neither on the initial state of the 
system and nor on its intermediate quasi-steady-state. The dependence 
F(z, t )  is described at this stage by Eq. (2.35). 

Note a very important, in our opinion, feature of the process being 
studied. The characteristic time of relaxation towards the equilibrium 
can be very large in our system. This fact is related not so much to 
assumed small value of the constant q (if M is reasonably large the 
numerical value of constant q can be reasonably large too), as to the 
presence of the square factor ( M / W 2  in Eq. (2.37) for the characteristic 
relaxation time r2. The quantity M / N  is the average size of aggregates, 
and, as a rule, it is large when the aggregates formation processes are 
essential. Therefore, the existence of this factor leads to the ano- 
malously large value of the system relaxation time. 

4. TEMPERATURE HYSTERESIS OF VISCOSITY 

Above, we have considered two theoretical models for evolution of 
aggregative structure of oligomer liquids: the activation model and the 
relaxation one. It is apparent that both activation and relaxation can 
take place simultaneously, therefore it is necessary to consider a model 
which would take into account both these processes [26]. We shall 
supplement the assumptions formulated above by several more ones: 

0 activation of inert molecules because of an external action 
(temperature, for example) happens according to the Arrhenius 
mechanism with the rate constant k; 

0 activated molecules can relax to their initial state; 
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SELF-ORGANIZING OLIGOMER MODELS 26 I 

0 beginning from some critical value N,, of an average aggregates 
size N, the possibility for free molecules to join aggregates sharply 
increases; 

0 the temperature action results in a build up of k and growth of Ncr; 

“Combining” Eqs. sets (2.3)-(2.5) and (2.18)-(2.20) we shall ob- 
tain the following system of the kinetic equations: 

u, = -vkun + vkun-l + qu,+l - qu,, n 2 2, (2.38) 

n= I n=2 
(2.40) 

I? = -Pc + Rv, (2.41) 

where k is the constant of the rate of activated molecules addition to 
aggregates; q is the constant of the rate of activated molecules splitting 
out of aggregates; p is the constant of the rate of inert oligomer 
molecules activation; R is the constant of the rate of activated oligo- 
mer molecules relaxation; c is the concentration of inert molecules; 
v is the concentration of activated molecules; u, is the concentration 
of aggregates consisting of n molecules. 

Using the generating function (2.7), one can easily obtain the steady- 
state of Eqs. set (2.38)-(2.41). Indeed, the quantities F,,(z), ulst, csl, 
and vst are connected by three algebraic relations 

which allow (taking into account the second one of the conservation 
laws (2.21), having in this case the form (Cnun + v + c = M> finding 
any quantity being of interest for us. 

In particular, by means of following equation one can find the 
magnitude of Flzst (stationary value dF/dz at z = 1) through which the 
viscosity increment (Aq/v = Flzst) is determined: 

(2.43) 
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262 A. E. ARINSHTEIN AND S. M. MEZHIKOVSKII 

here we have shown that, according to our assumptions, the aggre- 
gation rate constant k depends on the average aggregates size which 
is proportional to their total mass FlZsf .  

It is convenient to search the solution of Eq. (2.43) graphically (a 
step-like dependence k(F,zsJ was approximated with the help of a 
hyperbolic tangent). The analysis of the obtained solutions has shown 
that with raise of temperature T, depending on whether the ratio (k/q)/ 
(1 +R/P) increases or decreases, the value of FLzsr and, correspond- 
ingly, of the viscosity increment Aq/q may either increase or decrease. 
In the first case, when with raise of temperature the quotient (k/q)/ 
(1 +RIP) increases, while the amplitude of the k constant change with 
the Flzsf build up is reasonably high, there are three steady-states in the 
system. Two of them are stable and the third one is unstable, i.e., 
bistability arises, the situation being possible when with temperature 
raise the value of all the three steady-states increases (see Fig. 2.1). 

Hence, the situation is possible when the bifurcation diagram of 
viscosity (with temperature taken as a controlling parameter) has the 
form presented in Figure 2.2. In such a case, a change in the state of 
a system can proceed as follows. If the initial state of the system is 

FIGURE 2.1 The graphic solution of Eq. (2.43) in the case, when with raise of 
temperature the ratio (k /q) / ( l+R/P)  increases. The curve L corresponds to the left part 
of Eq. (2.43), and the curves R ,  and R2 correspond to its right part at T I  and T2 
( T I  < T2). 
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FIGURE 2.2 The bifurcation diagram for a system with bistability, demonstrating the 
mechanism of hysteresis wherein a transition from one branch of stable states to another 
happens within a range of temperature values where there exist both branches of stable 
states, without disappearance of one of them, i.e., it happens not abruptly. The branches 
AB and CD are stable, and the branch BC is unstable. 

located on the branch A B  (points 1 and 2), then with increase of 
temperature T with any step AT the system always will appear in an 
intermediate nonequilibrium state which is located below the curve AB 
(points 2’ and 3’). It can relax only to the state which also lies on the 
branch A B  (points 2 and 3). However, when decreasing temperature T 
with a rather large step AT, the system can appear in an intermediate 
nonequilibrium state which is located over the curve C B  (the point 4’). 
From this point relaxation is possible only to a state which is located 
on the branch CD via the path 4’ + 4 +. . . + 6.  As a result, at the 
reverse temperature path the phenomenon of hysteresis can be 
observed. 

Such a mechanism of hysteresis arising leads to the fact that in the 
case of forward temperature path no abrupt change of the state occurs 
corresponding to a transition from a disappearing branch of steady- 
states to another one (see Fig. 2.3). On an experimental curve the jump 
would manifest itself in that the last point (or several last points) 
located on a curve 1-2 (corresponding to the forward temperature 
path) would go to the curve 3 -4 (corresponding to the reverse tem- 
perature path). But in such a case the experimental curve presented 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
0
:
3
9
 
1
9
 
J
a
n
u
a
r
y
 
2
0
1
1



264 A. E. ARINSHTEIN A N D  S. M. MEZHIKOVSKII 

1% v 
4 

490 - 

395 - 
7 , , # . # . # , , . , . # ,  

20 30 40 50 60 70 80 
T, "C 

FIGURE 2.3 Hysteresis of viscosity at the forward (1 -2) and reverse (3-4) paths in a 
rheological experiment. By the dotted line, it is shown how a hysteresis dependence of 
viscosity would appear at the forward ( 1  -2') and inverse (2'-4) temperature paths in the 
case of the standard mechanism of bistability. 

in Figure 2.3 would appear somewhat different. In particular, the point 
2 would shift upwards and lie on the prolongation of the line 3-4, 
having occupied the position of the point 2'. It is such a situation that 
takes place in the experiment described in [19, 261. 

5. THE KINETICS OF THE BIMOLECULAR CHEMICAL 
REACTION OF AN ENSEMBLE OF ANISOTROPIC 
MOLECULES 

As mentioned above, within the framework of the considered models 
we do not take into account peculiarities of oligomer aggregates 
structure. However, when it is assumed that aggregates in oligomer 
liquids are formations with increased orientation order of anisotropic 
oligomer molecules one can explain unexpectedly high initial rate of 
polymerization observed experimentally in these systems. 

In the description of the chemical reaction kinetics of an anisotropic 
reactant we shall take into account that, due to anisotropy of reacting 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
0
:
3
9
 
1
9
 
J
a
n
u
a
r
y
 
2
0
1
1



SELF-ORGANIZING OLIGOMER MODELS 265 

molecules, the constant of the rate of their reaction depends on their 
mutual orientation [7, 16, 271. It is evident that relative orientation of 
reacting molecules can be different, thus resulting in the existence of a 
spectrum of the rate constants in the system. In the case that reactive 
centres are located only at one end of a molecule (k., the molecule 
is a vector) it is necessary to distinguish between the parallel and 
antiparallel relative orientations of molecules. 

Let us introduce the concentration c(cp, t )  of molecules having the 
orientation cp relative to an arbitrarily specified direction (for the 
director, the orientation cp corresponds to a double angle). The total 
concentration cc(t) of a substance can be expressed in terms of c(cp, t )  
by the expression 

2a 

C d c p ,  r) = b 49) Wcp. 

If the rotational mobility of anisotropic molecules is not taken into 
consideration (it is the situation which is of most interest for us), a 
standard kinetic equation of a second-order reaction can be written 
for the function c(cp, t )  in the approximation of point systems 

here K(cp - cpl) is the reaction rate constant for two anisotropic mol- 
ecules with orientation cp and cpl, respectively. 

The kernel K(cp - cpl) of the integral operator must obviously be 
symmetric about the rearrangement of arguments, i.e., it must be an 
even function with a maximum at cp - cpI = 7r and a minimum at cp = 

cpl. Besides, it must be a nonnegative periodic function with a cycle 
of 2lr. 

The exact solution of Eq. (2.44) can be obtained when the con- 
centration c(p, t )  is represented in the form 

and for a(cp, t )  shall be used a Fourier-series expansion 

a(cp, t )  = ~ ' n A o ( ' ) + ~ [ A l ( r ) c o s ( c p - ~ o ( t ) )  + . . . I .  (2.46) 
27rk 7r 
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The kernel K(cp - cpl) can also be represented as a Fourier-series 
expansion. We restrict our consideration only to the first harmonic: 

here X is the parameter characterizing the degree of anisotropy of the 
reaction rate constant, 0 5 X 5 1. If - 1 5 X 5 0, the maximum of the 
reaction rate constant corresponds to the parallel orientation of re- 
acting molecules. 

As a result we obtain the equations convenient for further analysis 

(2.48) 

Here Zn(x) are the Bessel functions of imaginary argument, and the 

The reactant concentrations c(q, t )  and c ~ ( t )  are expressed in terms 
function cpo(t) appears to be a constant: cpo(t) = cpo = const. 

of functions Ao(t) and A l ( t )  as 

In the case of weak orientation order of reacting anisotropic mol- 
ecules the time dependence of cc(t) was found to correspond to the 
common kinetics of a second-order reaction: 

(2.49) 

here we denote cc(0) = 27r/Ao(O) as the initial total concentration of 
a reactant. 

But, as the reaction proceeds, the degree of orientation order of 
anisotropic molecules in the system increases. Eventually, the point 
in time tor(l/tor N C ~ ( O ) [ ~ X A ~ ( O ) ] * ’ ~ )  comes, from which the degree of 
orientation order of anisotropic molecules can not be considered as 
small and the dependence (2.49) breaks down. 
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Note that in the case when the maximum of the reaction rate con- 
stant corresponds to the parallel orientation of reacting molecules 
(A < 0),  orientation self-organization does not occur in the system. 

Let us consider now the opposite limiting case for which the degree 
of orientation order of anisotropic reacting molecules is high. At 
1 - X << 1, which is indicative for the maximum anisotropy of the re- 
action rate constant, we obtain 

(2.50) 

here the parameter A ,(O) characterizes the initial degree of orientation 
order of anisotropic reacting molecules. 

At X = - 1, similar calculations result in another type of the func- 
tion cc(t), namely, 

(2.51) 

In its form, Eq. (2.51) is coincident with Eq. (2.49) which fits the 
common (nonpoly-chronic) kinetics. However, in the case, for which 
the degree of orientation order of anisotropic reacting molecules is 
high the effective rate constant at X = - 1 is twice as high as when 
any orientation ordering is absent. It is the effect that was observed 
experimentally in a number of works [ l ,  3,171. 

One can arrive to the same conclusions from more general 
considerations, examining the mutual influence of the chemical 
reaction kinetics and of structural organisation of the reaction 
medium [28, 291. 

The models considered above describe satisfactorily some peculia- 
rities of rheological and relaxation behaviour of oligomer systems. But 
they are far from explaining all the inherent anomalies of oligomers. It 
is connected with the fact that the models do not take into account 
some processes which, under specific conditions, can essentially affect 
oligomer liquids properties. First, these are the processes of new ag- 
gregates nucleation (associates and cybotaxes), taking into account 
their inner structure (anisotropy), effects of hydrodynamic interaction 
of associates, correlation in their spatial arrangement, influence of 
aggregates sizes on the constants of their growth and disintegration, 
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etc. All these factors may be included in a subsequent consideration 
within the framework of the main postulates of the aggregative model 
of supermolecular structure formation in oligomer liquids. However, 
although bringing some additional information and refining the con- 
sequences, taking account of the above factors must not influence 
radically the validity of the conclusions following from the models 
considered above. 
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